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Note 

Elimination of Spurious Eigenvalues 
in the Chebyshev Tau Spectral Method 

1. INTRODUCTION 

Spectral methods have been used to great advantage in hydrodynamic stability 
calculations; the concepts are described in Orszag’s seminal application of the 
Chebyshev tau method to the Orr-Sommerfeld equation for plane Poiseuille flow 
in 1971 [ 11. Orszag discusses both the Chebyshev Galerkin and the Chebyshev tau 
methods, but presents results for the tau method, which is easier to implement than 
the Galerkin method. The tau method has the disadvantage that two unstable 
eigenvalues are produced that are artifacts of the discretization. The occurrence of 
spurious eigenvalues has been discussed by several authors, cf. [2-71. 

In this note we present an extremely simple modification to the Chebyshev tau 
method which eliminates the spurious eigenvalues. We first study a simplified model 
of the Orr-Sommerfeld equation discussed by Gottlieb and Orszag [2]. We con- 
sider the Chebyshev tau method, which has two spurious eigenvalues and then 
describe a modification which eliminates them. Our modification is motivated by 
considering two other discretizations of the model problem which also have no 
spurious modes: a vorticity-streamfunction reformulation of the Chebyshev tau 
method, and the Chebyshev Galerkin method. For the model problem we show 
that the latter approaches are equivalent and that both reduce to our modification 
of the tau method. We also remark on the modified Galerkin method formulated 
by Zebib [4, 63. Finally, we consider results for the Orr-Sommerfeld equation, 
where our modified tau method also eliminates the spurious eigenvalues. The sim- 
plicity of the modification makes it a convenient alternative to other approaches to 
the problem. 

2. THE MODEL PROBLEM 

In their 1977 monograph on spectral methods, Gottlieb and Orszag [2, p. 1431 
consider the problem 

vl,,, = y’,,zz (-1 <z< 1, f>O), (1) 
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with the boundary conditions Y( f 1, t) = !PZ( f 1, t) = 0, as a simple model of 
incompressible fluid dynamics. A normal mode of the form !P(z, t) = e(z) exp at 
gives rise to the eigenvalue problem 

1(1,,,, = drz (-l<z<l), GW 

with the boundary conditions 

II/(*l)=II/,(+l)=o. (2b) 

The latter problem models some features of the Orr-Sommerfeld equation [ 1 ] and 
can be solved exactly. The eigenvalues of (2) are given by the values a = -p2, 
where either p = nx for n = 1, 2, . . . . corresponding to the even eigenfunctions with 
$,, = cos pz, or ~1 is a positive root of the transcendental equation tan p = /J, corre- 
sponding to the odd eigenfunctions with tj,, = sin pz. 

2.1. The Tau Method 

Gottlieb and Orszag [2] show that a straightforward application of the 
Chebyshev tau method to Eq. (2) gives rise to positive eigenvalues whose 
magnitudes increase rapidly as more terms are included in the expansion. Such 
spurious modes may be discarded by inspection for the system given by (2), but 
they cause severe numerical instability in the time-dependent system (1). The 
equations for the Chebyshev tau method are obtained by writing 

(3) 

where T,(z) is the nth degree Chebyshev polynomial, which satisfies T,,(cos 13) = 
cos no. We then have [ 1 ] 

II/,, = 2 aL2)T,,(z), tizzzz = 5 a?)T,(z), (4a) 
II=0 lZ=O 

where 

c a(‘)= n ” 5 p(p* -n*) spy (4b) 
p=n+2 

p+nevcn 

c a(4) =’ 
n n 24 -f p[p2(p2-4)2-3n2p4+3n4p2-n2(n2-4)2] ap, (4c) 

o-n+4 

and co = 2 and c, = 1 for n > 0. Note that these expressions give 0 = a$’ 1 = a$’ = 
ac4) - ac4) - ac4) - ac4) since $,, and JI,,,, N-3- N-2- N-l- NT are polynomials of degree N- 2 and 
N - 4, respectively. 
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Equations for the coefficients a, are defined by the relations 

(q,$$)=o(q,$), j=O ,..., N-4, 

where in the Chebyshev inner product we have ( Tj, T,) = (42) cjdjk. The resulting 
tau equations are then 

a(4) = aap, ” n=O, . . . . N-4, 

with the four boundary conditions that follow from (2b), 

(5a) 

n~ow)n N a,= C (+1)“n2a,=0. 
n=O 

(5b) 

The equations can be written as a generalized eigenvalue problem Ax = aBx, where 
A and B are (N + 1) x (N + 1) matrices whose first N - 3 rows are defined by 
Eq. (5a). The last four rows of A are given by Eq. (5b), and the last four rows of 
B vanish. 

We illustrate the matrix equations schematically for the case N= 8: 
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(6) 

here the non-zero entries are denoted by the symbol “x.” 
This system may be solved numerically using software such as the routine RGG 

from the EIS PACK library [8]. In Table I we give numerical results for the 
system (5) obtained with RGG. The table shows the values of the first and fifth 
negative eigenvalues e1 and c5, and the larger of two positive spurious eigenvalues 
CJ max. These results reproduce those given in Table 13.1 of [2]. (Note that there is 
a typographical error in [2] in the results for cr5 for large N.) The numbers were 
computed in double precision on the CDC Cyber 205 at the National Institute of 
Standards and Technology to reduce the round-off error. For single precision 
calculations on the Cyber 205 the effect of round-off becomes noticeable in the last 
two digits of crl for N > 25; the given values for e5 and e,,, remain the same. 

Subroutine RGG provides solutions to the problem written in the form 
/L4x = aBx [9], so that for Bj # 0 the jth eigenvalue is given by crj = uj//3,. Solutions 
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TABLE I 

Eigenvalues for the Model Problem 

Chebyshev tau [2] 

Cl 05 flnlax 

-9.8696598 -189.63800 4,272. 

-9.8696044 -89.54550 29,439. 

-9.8696044 -88.82644 111,226. 

-9.8696044 -88.82644 294,697. 

-9.8696044 -88.82644 652,722. 

-9.8696044 -88.82644 1,255,298. 

-9.8696044 -88.82644 

Present results 

Ql Q5 

-9.8695970 -97.95740 

-9.8696044 -88.84327 

-9.8696044 -88.82644 

-9.8696044 -88.82644 

-9.8696044 -88.82644 

-9.8696044 -88.82644 

-9.8696044 -88.82644 

with B = 0 correspond to the null space for the related problem Bx = @x, where 
p = l/a, and may be associated with infinite values for 0. Eigenvalues with /? = 0 
occur for the above system due to the boundary conditions (5b). For a given value 
of N > 6, four eigenvectors with fl= 0 are obtained, and the other N- 3 eigenvec- 
tors have b # 0. Eigenvalues with j? = 0 may be avoided by using the four equations 
(5b) representing the boundary conditions to eliminate the variables uN_ 3, uNmz, 
a,,-, , and aN from the system as described in [7]. This eliminates the eigenvalues 
with j3 = 0; the values with /I # 0 are unchanged. The numbers aj and Bj can also 
be used [lo] to give an estimate of the sensitivity of the computed eigenvalue to 
perturbations in A and B: cj is ill-conditioned if the condition number C(aj) = 
l/J&F-Tip is large, in which case oj will be difficult to determine using low 
precision arithmetic. 

2.2. A Modified Tau Method 

A useful modification of the tau method (5) is obtained by considering instead 
the equations 

n = 0, . . . . N- 4, (7a) 

with the four boundary conditions 

Hgow N a,= C (*l)nn2a,=0, 
?l=O 

where we have defined 

Vb) 

(8) 
N-2 

c $a= 
n ” 1 M*--n*)a,. 

p=n+* 
p+neven 
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Note that tip) is obtained from LZ~’ by simply dropping the last two terms. Thus, 
the modified matrix eigenvalue problem is obtained from the tau eigenvalue 
problem Ax = aBx by setting the last two columns of B to zero. 

Numerical results for the system (7) are also presented in Table I. The two 
spurious eigenvalues that are obtained using the standard tau method are 
eliminated, and the remaining eigenvalues are computed with essentially no loss in 
accuracy. The numbers were computed in double precision on the CDC Cyber 205 
at NIST. 

The motivation for our modification of the usual tau method is given in the 
following two sections. 

2.3. Vorticity-Streamfunction Formulation 

Gottlieb and Orszag [2] show that the spurious roots in the Chebyshev tau 
method are eliminated if the function i = $,, is introduced; i plays the role of 
vorticity in this simple model. In this case the model equations take the form 

with 

i,, = d, (94 

II/*, = L Pb) 

11/(+1)=$,(*1)=0. (9c) 

We now have two coupled second-order equations for [ and Ic/; note, however, that 
there are four boundary conditions on $ and none on 5. 

If, in addition to Eq. (3), we write 

5= f hz~“(Z), 
n=O 

then the tau equations for (9) become 

bc2) = ab n n9 n = 0, . . . . N - 2, 

ac2) = b ” II, n = 0, . . . . N- 2, 

together with the four boundary conditions 

n~owY lv a,= 1 (fl)“n2a,=0. 
II=0 

(10) 

These equations also take the form of a generalized eigenvalue problem and may 
be solved using subroutine RGG. In this case it is found that the discretized 
Poisson equation (1 lb) contributes N + 1 eigenvectors with /I = 0. There are an 
additional four eigenvectors with jI = 0 arising from the terms representing the 
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boundary conditions, leaving N - 3 eigenvectors with /I # 0. For this system all 
eigenvalues with j? # 0 are negative; the spurious eigenvalues have been eliminated. 

As pointed out by Gardner et al. [7], the size of the system may be reduced by 
using the last two equations in (1 la) to eliminate the unknowns b,- , and b,, and 
then using (llb) to eliminate bj for j= 0, . . . . N - 2. The first N- 3 equations in 
(lla), together with the boundary conditions (1 lc), then constitute a generalized 
eigenvalue problem analogous to the system (5), but without spurious eigenvalues 
that have Re(a) > 0. The eigenvalues with j? # 0 are unchanged by the elimination. 
We next show explicitly the difference between formulations (5) and (11). If we 
introduce the general notation 

bj2’= f r,b,, j= 0, . . . . N, 
k=O 

where the elements rjk follow from the explicit form of Eq. (4b), then the last two 
equations in (1 la) give 

ab - bc2) - rN-2,NbN, N-2- N-2- ab,-,=b”I N 3 =r _ b N 3,N-1 N-1. 

Putting these expressions for b, and b,- 1 into the first N - 3 equations in (lla), 
and then using (llb) to eliminate the remaining bj, we obtain 

Since ug’ , = UC) = 0, the left-hand side may be written 
N-2 

,C, rjk@ = kco rjk@ E u,!~), j = 0, . . . . N. 

Finally, since a!$‘, = rN-3,N- laN- 1 and a’,“, = rN-2,NuN, we conclude that the 
tau equations (1 la) and (1 lb) are equivalent to 

alP’=aap’-aT,,,~,a,~,-aT,,,a,, n=O, . . . . N-4. (12) 

Since 

au) = n 5 mkaky n = 0, . . . . N, 
k=O 

the resulting system is precisely equivalent to our modified equations (7). 

2.4. Chebyshev Galerkin Method 

The Chebyshev Galerkin discretization of the model problem (2) is also free from 
spurious eigenvalues [2]. In this representation, we write 

$= 5 %hI(Zh (13) 
II=4 
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where the functions 4, are chosen to satisfy the boundary conditions 
q+,=dq5,,/dz=O at z= +l, i.e., 

fbn(z) = T,(z) + Y”OTO@) + Ynl T,(z) + Ynz T,(z) + Yn3 T,(z), n = 4, ..,, N; 

here 

y o= 
” 

i 

i(n’-4), n even 
0, n odd Ynl = i 

0, n even 
Qcn2 - 9), n odd 

i 

‘n* -q ’ n even 

i 
0, n even 

yn2= 
0, n odd Yn3 = -g(n’- l), n odd. 

The Galerkin equations for the coefficients uj are defined by the relations 

(q5j,$)=~(q6j,3), j=4, . . . . N. (14) 

If we introduce four additional coefficients a,, a,, u2, and u3, we may write as 
before 

W) = f 47T,(z), (15) 
?I=0 

where 

N 

uj' C unYnj9 j = 0, . . . . 3. 
n = 4 

It follows that 

where e, = uj,“’ - au, . (2) The Galerkin equations (14) are therefore equivalent to the 
N - 3 equations, 

O=ej+2Yjoeo+Yj,e,+Yj2e2+Yj3e3, j = 4, . . . . N, 

plus the boundary conditions 

ngow N a,= C (+l)nn2u,=0, 
n=O 

(174 

(17b) 

which hold by the construction of a,, a,, u2, and u3. 
We next show that Eqs. (17a) are equivalent to (12). Since $(z) is a polynomial 

of degree N, it follows from (16) that eN=eN-i=O, eNe2= -~f,_,,,u,, and 
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eNp3= -ofN-3,N-laN-l. The last four equations in (17a) may then be used to 
obtain eO, e,, e2, and e3 in terms of aN and aN _ r ; a calculation gives 

ek= -brk,N-laN-l-~rk,NaN, k = 0, . . . . 3. 

A further calculation then shows that 

2yjoeo+yjlel +yj2e2+yj3e3=arj,N-laN-l + orj,NaN, j = 4, . . . . N - 4. 

Combining these last two expressions with (17a) we obtain 

e,= -(TrnN-laN-l-d-n,NaNy n=O, . . . . N-4, 

which reduce to (12). 
We conclude that each of the discrete eigenvalue problems (7), (ll), and (17) are 

equivalent in the sense that eigenvalues cr with j #O that are produced by each 
formulation are identical. 

2.5. Other Galerkin Procedures 

Other variants of the Galerkin formulation are possible. For example, Zebib 
[4, 63 introduces a different basis by writing 

N-4 

$= c h,u,(z), 
ll=O 

(18) 

where the u,(z) are linearly independent polynomials of degree at most N, uniquely 
characterized by 

d4u 
2 = T”(Z), 
dz4 

with the boundary conditions u, = du,/dz = 0 at z = f 1. Zebib’s original approach 
[4] produced results that included spurious eigenvalues, which he was later able to 
eliminate [6]. 

The functions u,(z) for n = 0, . . . . N - 4, and the functions tik for k = 4, . . . . N used 
in the previous section span the same space, i.e., the set of Nth degree polynomials 
which, together with their derivatives, vanish at z = f 1. It follows that the function 
e(z) in Eq. (18) can be re-expressed as a linear combination of T,(z), n = 0, . . . . N, 
as in Eq. (15), where the coefficients aj are linearly related to the constants h, above 
and satisfy (17b). Equation (16) holds as well. 

Using Zebib’s original approach [4] on the model problem, we take the inner 
product of Eqs. (16) with T, for n = 0, . . . . N - 4 and obtain equations which, in 
terms of the variables aj, are precisely equivalent to the Chebyshev tau equations 
e,=O for n=O, . . . . N-4. 

Using Zebib’s later approach [6], we take the inner product of Eqs. (16) with u, 
for n = 0, . . . . N - 4. Since each basis function u, can be expressed as a linear com- 
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bination of the functions #k, we obtain a linear combination of Eqs. (17). The 
corresponding matrix equations are now related by pre- and post-multiplication by 
invertible matrices, and the spectra are identical. Thus Zebib’s second approach 
produces eigenvalues which are in principle identical to those obtained using the 
regular Galerkin formulation outlined in the previous section. In practice, the 
condition numbers for the eigenvalues obtained using Zebib’s later approach are 
large compared to those obtained using the standard Galerkin method. Roughly 
speaking, this may be attributed to the fact that the basis U, is not as well- 
conditioned as the basis 4k; the dk are more nearly orthogonal (cf. [ 111). 

These results generalize, in the sense that expanding in any basis for polynomials 
of degree N satisfying the boundary conditions still produces a function which 
satisfies Eqs. (15)-(16). Taking the inner product of the equations with T, will 
produce the spectrum from the Chebyshev tau method, with spurious eigenvalues. 
Taking the inner product of the equations with the basis functions will produce the 
spectrum from the standard Galerkin method, with no spurious eigenvalues. 

3. OTHER MODEL PROBLEMS 

In Table II we list eight model problems of second through sixth order which 
were discretized and solved using the Chebyshev tau method with N = 20. Spurious 
eigenvalues were observed in three of these cases. The first was considered in Sec- 
tion 2. The spurious modes in the remaining two problems, both sixth order, were 
eliminated using a modified tau method similar to that proposed in Section 2.2. 

In problem (7) we use the modified discretization 

&5) = 33, 
n n = 0, . . . . N - 6, 

TABLE11 

Occurrence of Spurious Eigenvalues in the Chebyshev Tau Methoda 

No. Equation Boundary Conditions Spurious 

1 $(Z) = a$ $(H) = 0 None 
2 7p) = UlC, $(l)(H) = 0 None 
3 +C4) = u+ $(H) = ?p’(*l) = 0 None 
4 q!J(4) = up) $(+A) = $J”‘(H) = 0 Two 

5 $J(4) = cnp 4(&l) = 7/!J’*‘(*l) = 0 Noneb 

6 @) = all, $(H) = @‘)(H) = $(*)(kl) = 0 None 

7 +@’ = u+(*) q(U) = $J”‘(H) = $‘*‘(+l) = 0 Two 

8 +(‘) = u$(~) +(fl) = +“‘(&l) = $‘*‘(&l) = 0 Foulc 

a. Here we denote derivatives of 4 by a superscript in parentheses. 
b. May be reduced to a Dirichlet problem for q(2). 

c. Two complex conjugate pairs with Re(u) < 0, but Im(u) # 0. 
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where 

N-4 

c 32)= 
n n c P(P2-n2b,; 

p=n+2 
pi-neven 

that is, the last four columns of the matrix representing a?’ are set to zero. In 
problem (8) we use the discretization 

p = aa;‘, n = 0, . . . . N - 6 

where 

PcP2(P2-4)2-3 n’p” + 3n4p2 - n’(n’ - 4)2] a,; 

that is, the last two columns in the matrix representing uL4) have been set to zero. 
In each of these cases no significant change in the accuracy of the computed eigen- 
values was observed. 

4. ORR-SOMMERFELD EQUATION 

The linear stability of a parallel viscous flow subject to spatially periodic distur- 
bances is governed by the Orr-Sommerfeld equation, as described in standard texts 
on hydrodynamic stability (e.g., [12]). The Orr-Sommerfeld equation for plane 
Poiseuille flow may be written in the form 

c*- - 2a2*,, + a”$]/(iaR) - (U(z) -s)(ll/== - a2+) + U,,* = 0 

for - 1 < z < 1, where U(z) = 1 - z2 is the base velocity, a is the wavenumber of the 
disturbance, R is the Reynolds number of the flow, and s is the temporal eigenvalue. 
The boundary conditions at z = + 1 are $ = JI, = 0. For a given Reynolds number, 
the flow is stable if Im(s) < 0 for all wavenumbers a. The critical Reynolds number 
R, is that for which the imaginary part of s first vanishes at a critical wavenumber 
a, as R is increased. 

The use of the Chebyshev tau method to discretize the equations produces two 
spurious eigenvalues with Im(s) > 0; results for the standard test case a = 1 and 
R = 10,000 [l] are given in Table III. The results were obtained using single 
precision on the CDC Cyber 205 at NIST with the IMSL routine EIGZC [ 131. 

The spurious eigenvalues may be removed by employing the vorticity-stream- 
function formulation [2, 71 or by employing a Galerkin [Z] or modified Galerkin 
approach [6]. As in the model problem, Zebib’s approaches are expected to lead 
to the same eigenvalues as the Chebyshev tau [4] or Chebyshev Galerkin [6] 
methods (in the absence of rounding errors). 
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N Chebyshev tau Present results 
26 0.08079254 + 35.0190231 i 0.23627968 + 0.00445813 i 

0.08896405 + 29.3934954 i 0.89244759 - 0.02021587 i 
0.23713751+0.00563644 i 0.96105877 - 0.02035856 i 
0.76774613 - 0.00334424 i 0.90085138 - 0.02192943 i 

38 0.05429957 $178.047201 i 0.23752985+ 0.00373031 i 
0.05782029 + 158.755478 i 0.96336687 - 0:03521228 i 
0.23752676 + 0.00373427 i 0.96270591 - 0.03619040 i 
0.96383565 - 0.03503110 i 0.90798372 - 0.04519238 i 

50 0.04092607 + 563.551154 i 0.23752648 + 0.00373967 i 
0.04288092 + 517.476254 i 0.96462731 - 0.03516958 i 
0.23752648 + 0.00373967 i 0.96464022 - 0.03518657 i 
0.96462865 - 0.03516827 i 0.27720546 - 0.05089517 i 

From [l] 0.23752649 + 0.00373967 i 0.23752649 + 0.00373967 i 
0.96463092 -0.03516728 i 0.96463092 - 0.03516728 i 
0.96464251 - 0.03518658 i 0.96464251 - 0.03518658 i 
0.27720434 - 0.05089873 i 0.27720434 -0.05089873 i 

MC FADDEN, MURRAY, AND BOISVERT 

TABLE III 

First Four Eigenvalues for the Orr-Sommerfeld Equation, G( = 1 and R = 10“ 

As another alternative, a direct modification of the usual Chebyshev tau formula- 
tion is suggested by the results of Section 2.2. If the equation are written in the form 

C~zzzz - 2~Vz2+ a”til/(-iW+ W)($zz-&)- u,,$ =~(lc/~~-~~ti), 

then the Chebyshev tau formulation produces N- 3 linear equations, 

[a(4)-22012a~)+cr4a,]/(-iaR)+ ... =s(af'-a%,), n n = 0, . ..) N-4, (19) 

together with the four boundary conditions (17b), where for simplicity we have 
omitted in (19) the convolution sums involving U(z) whose form is unimportant 
for this discussion. To obtain the suggested modification, this expression is 
approximated instead by the formula 

[a:) - 2a2aL2’ + cr4a,]/( - is) + . . . = s(ap - a2u,), n = 0, . . . . N- 4, 

where the left-hand side is unchanged and a:*’ is given by (8); that is, the last two 
columns in the matrix that represents the second derivative are set to zero. As 
shown in Table III, this modification also serves to eliminate the two spurious 
eigenvalues in this case as well, with essentially no loss of accuracy in the other 
eigenvalues. It is not surprising that the modification successfully eliminates the 
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spurious modes, since the Orr-Sommerfeld equation differs from the model 
problem only in the lower-order derivative terms on either side of the equation. 

Due to differing treatment of these lower-order terms, this modification of the 
usual tau formulation of the Orr-Sommerfeld equation is not equivalent to either 
the vorticity-streamfunction formulation or the Galerkin formulation; the corre- 
sponding eigenvalues that are computed for a given N are similar but not identical. 
Our modified tau method is more efficient than the vorticity-streamfunction for- 
mulation [2], which doubles the size of the system, or a Galerkin formulation 
[ 1,6], which is more awkward to implement. Eliminating half of the unknowns to 
reduce the size of the system in the vorticity-streamfunction formulation [7] also 
produces a more complicated system of equations. 
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